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Overview

• Numerical trajectory planning generates
dynamically feasible trajectories ensuring
prescribed constraints
• In practice,

• exogenous perturbations
(e.g. winds)
• endogenous perturbations

(e.g. actuator misalignment)
cause deviations from the planned
trajectory
=⇒ constraints may be then violated.

Planned
trajectory

Q0: How to incorporate robust constraint satisfaction?
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Overview

Robust trajectory optimization leads to Semi-Infinite
Programming (SIP) problems.
In discrete-time, SIP have:
• finite number of decision variables;
• finite number of time instances at which constraints are enforced;
• infinite number of uncertainty realizations;

⇒ infinite number of constraints.
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Overview

Uncertainty characterization
Sampling-based [19], [17] Compact set
Tube-based [11], [5], [3], [15] Polytopic set
Min-max MPC [10], [18] Class-K functions
Stochastic planning [9], [4] Probabilistic
Funnel synthesis [6],[7] L∞-norm bound
System-Level Synthesis [1], [8] Ellipsoidal set

Table: Some techniques for robust trajectory planning and control
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Problem Formulation
Dynamics

• Discrete-time linear system with endogenous perturbations nt .
• Dynamics with perturbations in recursive form:

xt+1 = Atxt + Btut + Etnt t = 0, . . . , N
• Variables:

ūt :=


u0
...

ut

 n̄t :=


n0
...

nt


• Dynamics in stacked form:

xt+1 = Φt+1,0x0 + B̄t ūt + Ēt n̄t
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Problem Formulation
Nominal and deviation dynamics

• We decompose state into nominal xn and deviation states ∆x :

xt+1 = xn
t+1 + ∆xt+1

• Nominal state and deviation dynamics in recursive form:

xn
t+1 = Atxn

t + Btut ,

∆xt+1 = At∆xt + Etnt .

• Nominal state and deviation dynamics in stacked form:

xn
t+1 =Φt+1,0xn

0 + B̄t ūt

∆xt+1 =Φt+1,0∆x0 + Ēt n̄t
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Problem Formulation
Perturbation, Cost and Constraints

• Nominal state and control-dependent perturbation:

0 ≤ nt ≤ f (xn
t , ut)

where f (xn
t , ut) is convex and elementwise nonnegative.

• Convex cost function
J(ūT )

• SIP time-varying state constraints

Ht+1xt+1 ≤ ht+1 ∀n̄t , t = 0, . . . , N
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Problem Formulation
Trajectory planning problem

Semi-Infinite Robust Trajectory Planning problem:

minimize
x̄n

T+1,ūT
J(ūT )

s.t. Dyyyyynamics with ppppperturbations:

xt+1 = Φt+1,0xn
0 + B̄t ūt + Φt+1,0∆x0 + Ēt n̄t t = 0, . . . , N

SIP state constraints:

Ht+1xt+1 ≤ ht+1 ∀n̄t s.t. 0 ≤ n̄t ≤ f̄ (x̄n
t , ūt) t = 0, . . . , N
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Analytical Results
SIP State Constraint - Reformulation

• SIP state constraints satisfied robustly if

max
0≤n̄t≤f̄ (x̄n

t ,ūt)
Ht+1,i Ēt n̄t ≤ MRHS,i , i = 1, ..., nh

where

Ht+1 =


Ht+1,1

...
Ht+1,nh


MRHS,i := ht+1,i − Ht+1,i(Φt+1,0xn

0 + B̄t ūt + Φt+1,0∆x0)
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Analytical Results
SIP State Constraint - Reformulation

• Dual of the maximization problem:

minλt,i λT
t,i f̄ (x̄n

t , ūt)
s.t. λt,i ≥ 0, λT

t,i ≥ Ht+1,i Ēt

• Feasible dual cost bounds the primal.
⇒ SIP state constraints satisfied if

λT
t,i f̄ (x̄n

t , ūt) ≤ MRHS,i

λt,i ≥ 0, λT
t,i ≥ Ht+1,i Ēt

for all i ∈ 1, ..., nh.
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Analytical Results
SIP State Constraint - Reformulation

• Dual variables in stacked form:

Λt =


λT

t,1
...

λT
t,nh


• State constraints in stacked form:

Λt ≥ Ht+1 Ēt , Λt ≥ 0,

Λt f̄ (x̄n
t , ūt) ≤ MRHS .

• Biconvex in Λt , x̄n
t , ūt .

• Minimum components of Λt ⇒ minimum dual cost ⇒ no
conservatism
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Analytical Results
Closed-form solution

• Strong duality holds for the constraint reformulation
⇒ State Constraints satisfied
• robustly
• with no conservatism

for the following choice of dual variable Λ:

Λ∗
t = max{0, Ht+1 Ēt}
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Analytical Results
Convex trajectory planning problem

Convex Reduction ⇒ Convexified Robust Trajectory Planning
problem

minimize
x̄n

T+1,ūT
J(ūT )

s.t. Dyyyyynamics:
xn

t+1 = Φt+1,0xn
0 + B̄t ūt t = 0, . . . , N

State constraints:
Λ∗

t f̄ (x̄n
t , ūt) ≤ MRHS t = 0, . . . , N
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Example Simulation
Spacecraft Proximity Operations

• Clohessy-Wiltshire equations for dynamics;
• S/C must navigate from (relative)

stationary position into a terminal
bounding box, s.t. keep-out plane
constraint [12], [13] Figure: Schematics

of the problem[1]

[1] Malyuta, D., Açıkmeşe, B. and Cacan, M. "Robust Model Predictive Control for
Linear Systems with State and Input Dependent Uncertainties", ACC 2019
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Example Simulation
Spacecraft Proximity Operations

Figure: No planning for perturbation; many
trajectories unsafe.

Perturbations:
• Control uncertainty:

error proportional to
control magnitude
(Gates’ model)
• Navigation

uncertainty: error
proportional to
distance from
landmark:

0 ≤ n ≤ 2(r − rlm)2
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Example Simulation
Spacecraft Proximity Operations

Figure: Planning for perturbation; all
trajectories safe.

Perturbations:
• Control uncertainty:

error proportional to
control magnitude
(Gates’ model)
• Navigation

uncertainty: error
proportional to
distance from
landmark

0 ≤ n ≤ 2(r − rlm)2
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Problem Formulation
Linear System with Feedback

• Dynamics with perturbations as before:

xt+1 = Atxt + Btut + Etnt t = 0, . . . , N

but
• Control ut is decomposed into open-loop vt and a linear state

feedback Kt∆xt :
ut = vt + Kt∆xt

• Nominal and deviation dynamics with feedback in resursive form:

xn
t+1 = Atxn

t + Btvt ,

∆xt+1 = (At + BtKt)∆xt + Etnt .
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Problem Formulation
Linear System with Feedback

• Control in stacked form:

ūt = v̄t + K̄t∆x̄t

given

K̄t := diag(K0, . . . , Kt), ∆x̄t :=


∆x0

...
∆xt

 , v̄t :=


v0
...
vt


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Problem Formulation
Linear System with Feedback

• Matrices:

Φ̄t,0 :=


I
...

Φt,0

 ¯̄Et :=


Ē0 0
... ...

Ēt 0


• Nominal and deviation dynamics with feedback in stacked form:

xn
t+1 = Φt+1,0xn

0 + B̄t v̄t ,

∆xt+1 = (Φt+1,0 + B̄tK̄tΦ̄t,0)∆x0 + (Ēt + B̄tK̄t
¯̄Et−1)n̄t .
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Problem Formulation
Perturbation, Cost and Constraints

• As before:
• Nominal state and control-dependent perturbation;

0 ≤ nt ≤ f (xn
t , vt)

• SIP state constraints:

Ht+1xt+1 ≤ ht+1 ∀n̄t

• Convex cost function, treated with SIP constraint:

J(ūT ) ≤ J ∀n̄T
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Problem Formulation
Trajectory planning problem

Semi-Infinite Robust Trajectory Planning problem:

minimize
x̄n

T+1,v̄T ,K̄T ,J
J

s.t. Nominal dyyyyynamics:
xn

t+1 = Φt+1,0xn
0 + B̄t v̄t t = 0, . . . , N

Deviation dyyyyynamics:
∆xt+1 = (Φt+1,0 + B̄tK̄tΦ̄t,0)∆x0 + (Ēt + B̄tK̄t

¯̄Et−1)n̄t t = 0, . . . , N
SIP state constraints:
Ht+1xt+1 ≤ ht+1 ∀n̄t s.t. 0 ≤ n̄t ≤ f̄ (x̄n

t , v̄t) t = 0, . . . , N
SIP cost constraint:
J(ūT ) ≤ J ∀n̄T s.t. 0 ≤ n̄T ≤ f̄ (x̄n

T , v̄T )
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Analytical Results
SIP State Constraint - Reformulation

• SIP state constraints satisfied if

max
n̄t

Ht+1,i (Ēt + B̄tK̄t
¯̄Et−1)n̄t ≤ MRHS,i i = 1, ..., nh

s.t. 0 ≤ n̄t ≤ f̄ (x̄n
t , v̄t)

where

MRHS,i := ht+1,i−Ht+1,i(Φt+1,0xn
0 +B̄t v̄t+(Φt+1,0+B̄tK̄tΦ̄t,0)∆x0)
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Analytical Results
SIP State Constraint - Reformulation

• Dualization
⇒ Equivalent state constraints in stacked form:

Λt ≥ Ht+1 (Ēt + B̄tK̄t
¯̄Et−1), (1)

Λt ≥ 0, (2)
Λt f̄ (x̄n

t , v̄t) ≤ MRHS . (3)

• Biconvex in Λt , x̄n
t , v̄t , minimum components of Λt

⇒ no conservatism.
• What about the gain K̄t?
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Analytical Results
Feedback Gain Synthesis Step

• System is stable iff exist G and symmetric P such that [2][
P (At + BtKt)T GT

t
Gt(At + BtKt) Gt + GT

t − P

]
≻ 0 (4)

Algorithm Feedback Gain Synthesis
Input: K (0), εG

1: k ← 0
2: while ∥P(k) − G (k)∥ > εG do
3: Fix K = K (k), minimize ∥P − G∥2 subject to (4)
4: Fix G = G (k), minimize 1⊤Λ1 subject to (1), (2), (4)
5: k ← k + 1
6: end while
7: Return K (k)
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Analytical Results
SIP Cost Constraint - Reformulation

• Cost ∂n̄T J n̄T bounded by Jn if :

max
n̄T

∂n̄T J n̄T ≤ Jn

s.t. 0 ≤ n̄T ≤ f̄ (x̄n
T , v̄T )

• Dualizing and expressing constraints in stacked form:

ΛJ
T ≥ ∂n̄T J ,

ΛJ
T ≥ 0,

ΛJ
T f̄ (x̄n

T , v̄T ) ≤ Jn

• Minimum components of ΛJ
T ⇒ no conservatism.
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Analytical Results
Closed-form solution

• SIP State Constraints satisfied for the choice of Λt

Λ∗
t = max{0, Ht+1 (Ēt + B̄tK̄t

¯̄Et−1)}

• Uncertain cost bounded
• with no conservatism

for the choice of ΛJ
T :

ΛJ∗
T = max{0, ∂n̄T J}
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Analytical Results
Trajectory Planning Step

Convexified Robust Trajectory Planning problem

minimize
x̄n

T+1,v̄T ,J ,Jn
J

s.t. Dyyyyynamics:
xn

t+1 = Φt+1,0xn
0 + B̄t v̄t t = 0, . . . , N

State constraints:
Λ∗

t f̄ (x̄n
t , v̄t) ≤ MRHS t = 0, . . . , N

Cost function:
ΛJ∗

T f̄ (x̄n
T , v̄T ) ≤ Jn

J (v̄T + ∂∆x0 ūT ∆x0) + Jn ≤ J
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Analytical Results
Complete algorithm

Algorithm Convex Robust Trajectory Planning and control
1: Compute Stabilizing control guess K (0)

2: Solve Feedback Gain Synthesis
3: Compute Λ∗

t , ΛJ∗
T

4: Solve Convexified robust trajectory planning
5: Return x̄n

T+1, v̄T , K̄T ,J

• Control synthesis and trajectory optimization performed
sequentially
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Example Simulation
Double Integrator with K synthesis

• 2-DoF double integrator; difference between open-loop vs.
closed-loop Monte Carlo simulations.
• Vehicle must navigate from stationary position into a terminal

bounding box, subject to
• perturbation increasing with distance from x -axis
• optimized linear feedback K
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Example Simulation
Double Integrator with K synthesis

Figure: Dispersed trajectories with feedback

Perturbations [14]:
• Navigation

uncertainty:
error proportional
to distance from
y-plane:

0 ≤ n ≤ 2r 2
y
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Example Simulation
Double Integrator with K synthesis

Figure: Control ensures constraint satisfaction

Perturbations:
• Navigation

uncertainty:
error proportional
to distance from
y-plane:

0 ≤ n ≤ 2r 2
y
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Problem Formulation
Overview

Apply an impulse at each time instant ti .
Satisfy state constraints for all times t ∈ [t0, tN ].

t

x

t0 t1 ti tN

x+
0

x−
1

x+
1

x−
i

x+
i x−

N

xmin(t)

xmax(t)

B∆1

B∆i
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Problem Formulation
Overview

Uncertainty grows:
• during each interval
• at each impulse

t

x

t0 t1 ti tN

xmin(t)

xmax(t)

B(∆1 + n1)
B(∆i + ni)
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Problem Formulation
Dynamics

• Continuous-time (CT) nonlinear dynamical system with
endogenous uncertain impulsive controls [16].
• CT dynamics with uncertain initial conditions:

.x(t) = f (x(t)), x(t+
0 ) = x̄−

0 + B0nx ,0

where x̄−
0 is assigned.

• Uncertain impulsive controls:

x(t+
i ) = x(t−

i ) + B(∆i + ni) i = 0, . . . , N
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Problem Formulation
Nominal and deviation dynamics

• We decompose state into nominal x̂ and deviation states δx :

x(t) = x̂(t) + δx(t)

• Nominal state and deviation dynamics:
.̂
x(t) = f (x̂(t))

δ
.x(t) = f (x(t))− f (x̂(t))

x̂(t+
i ) = x̂(t−

i ) + B∆i

δx(t+
i ) = δx(t−

i ) + Bni , δx(t−
0 ) = B0nx ,0
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Problem Formulation
Perturbation, Constraints, Cost

• Nominal state and control-dependent perturbations:

0 ≤ ni ≤ β∆,i(x̂(t−
i ), ∆i)

0 ≤ nx ,0 ≤ βx(x̂(t−
0 ))

where β∆, βx are elementwise nonnegative functions.
• SIP continuous-time linear state constraints

H x(t) ≤ h ∀n :=
[

n⊤
0 n⊤

1 . . . n⊤
N

]⊤

• Nominal cost
L(x̂N)
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Problem Formulation
Nonlinear Robust trajectory planning problem

Semi-Infinite Nonlinear Robust Trajectory Planning problem:

minimize
x̂ ,∆

L(x̂N)
s.t. Dyyyyynamics:.x(t) = f (x(t))

Uncertain impppppulsive controls:
x(t+

i ) = x(t−
i ) + B(∆i + ni) i = 0, . . . , N

Uncertain initial conditions:
x(t−

0 ) = x̄−
0 + B0nx ,0

SIP state constraints:
Hx(t) ≤ h ∀n s.t. 0 ≤ ni ≤ β∆,i(x̂(t−

i ), ∆i)
0 ≤ nx ,0 ≤ βx(x̂(t−

0 ))
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Analytical Results
Uncertain State Constraint - Reformulation
• SIP approximate state constraints satisfied robustly at each

time t if
max

n
HiE(t)n ≤ MRHS,i

s.t. 0 ≤ n ≤ β(x̂−, ∆)
where

β :=


βx

β∆,0
...

β∆,N

 , H =


H1
...

Hnh

 , MRHS = h − Hx̂(t),

E(t) :=
[

∂x(t)
∂nx ,0

∂x(t)
∂n1

. . .
∂x(t)
∂nN

]
Convex Optimization for Robust Trajectory Planning and Control 43 December 9, 2025



Analytical Results
Uncertain State Constraint - Reformulation

• Using duality, SIP constraint is satisfied for all times t if

Λ(t) ≥ HE(t), Λ(t) ≥ 0,

Λ(t)β(x̂−, ∆) ≤ MRHS

• Constraint duals are minimized

Λ∗(t) = max{0, HE(t)}
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Analytical Results - Nonlinear Case
Uncertain State Constraint - CT reformulation

• Augment state[1] with ξ(t), with dynamics

fξ(x̂, ∆) := max{0, Λ∗(t)β(x̂−, ∆)−MRHS}2

• Constraints satisfied iff isoperimetric boundary conditions
satisfied:

.
ξ(t) = fξ(x̂, ∆)

ξ+
i − ξ−

i+1 = 0 i = 0, . . . , N − 1

[1] Elango, P., Luo, D., Kamath, A. G., Uzun, S. Kim, T. and Açıkmeşe, B. “Continuous-Time
Successive Convexification for Constrained Trajectory Optimization.” Automatica, 2025.
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Analytical Results
Nonlinear CT-Robust trajectory planning problem

Nonlinear CT-Robust Trajectory Planning problem:
minimize

x̂ ,∆
L(x̂N)

s.t. Dyyyyynamics:.̂
x(t) = f (x̂(t))
Impppppulsive controls:
x̂+

i = x̂−
i + B∆i i = 0, . . . , N

Initial conditions:
x̂(t−

0 ) = x̄−
0

State constraints:.
ξ(t) = fξ(x̂, ∆)
ξ+

i − ξ−
i+1 = 0 i = 0, . . . , N − 1
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Example Simulation
Nonlinear Near-Rectilinear Halo Orbit Dynamics
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Example Simulation
Nonlinear Near-Rectilinear Halo Orbit Dynamics

• 3-DoF relative dynamics on
Near-Rectilinear Halo Orbit
• Chaser must loiter for as long as

possible in a box around target.
• Uncertain impulse proportional to

• control magnitude (Gates’ model)
• position on orbit (high at perilune,

low at apolune)

Target

Chaserix

iy

iz
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Example Simulation
Nonlinear Near-Rectilinear Halo Orbit Dynamics

dummy
text

dummy
text

Figure: Dispersed trajectories around the target - Dots are impulse locations
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Example Simulation
Nonlinear Near-Rectilinear Halo Orbit Dynamics

• Initial offset along Earth-Moon axis
• Impulses applied where position uncertain

is low
• All trajectories inside the box at all times
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Conclusions

Q0: How to incorporate robust constraint satisfaction?
• Duality can bypass Semi-Infinite formulations of robust

trajectory optimization problems.

Q1: How to incorporate robust constraint satisfaction without
conservatism?
• Duality enables robust constraint satisfaction for both linear

and nonlinear dynamical systems;
• Endogenous perturbations can be treated with no

conservatism under mild modeling assumptions;

Convex Optimization for Robust Trajectory Planning and Control 52 December 9, 2025



References I

[1] S. Chen, V. M. Preciado, M. Morari, and N. Matni, “Robust
model predictive control with polytopic model uncertainty
through System Level Synthesis,” en, Automatica, vol. 162,
no. 111431, p. 111 431, Apr. 2024. doi:
10.1016/j.automatica.2023.111431.

[2] M. C. De Oliveira, J. Bernussou, and J. C. Geromel, “A new
discrete-time robust stability condition,”
Systems & control letters, vol. 37, no. 4, pp. 261–265, 1999.

[3] S. Diaconescu, F. Stoican, B. D. Ciubotaru, and S. Olaru,
“Zonotope-based elastic tube Model Predictive Control,”
arXiv [eess.SY], 2025.

Convex Optimization for Robust Trajectory Planning and Control 53 December 9, 2025

https://doi.org/10.1016/j.automatica.2023.111431


References II

[4] K. Echigo et al., “Principled stochastic trajectory planning for
asteroid reconnaissance,” en,
Journal of Guidance, Control, and Dynamics, pp. 1–19, 18 11
2025. doi: 10.2514/1.g008899.

[5] B. Houska, J. Li, and B. Chachuat, “Towards rigorous robust
optimal control via generalized high-order moment expansion,”
en, Optimal control applications & methods, vol. 39, no. 2,
pp. 489–502, Mar. 2018. doi: 10.1002/oca.2309.

Convex Optimization for Robust Trajectory Planning and Control 54 December 9, 2025

https://doi.org/10.2514/1.g008899
https://doi.org/10.1002/oca.2309


References III

[6] T. Kim, P. Elango, and B. Açıkmeşe, “Joint synthesis of
trajectory and controlled invariant funnel for discrete-time
systems with locally Lipschitz nonlinearities,” en,
International journal of robust and nonlinear control, vol. 34,
no. 6, pp. 4157–4176, Apr. 2024. doi: 10.1002/rnc.7186.

[7] T. Kim, D. Luo, and B. Açıkmeşe, “Continuous-time constrained
funnel synthesis for incrementally quadratic nonlinear systems,”
arXiv [math.OC], Dec. 2025. doi:
10.48550/arXiv.2511.08868.

Convex Optimization for Robust Trajectory Planning and Control 55 December 9, 2025

https://doi.org/10.1002/rnc.7186
https://doi.org/10.48550/arXiv.2511.08868


References IV

[8] A. P. Leeman, J. Köhler, A. Zanelli, S. Bennani, and
M. N. Zeilinger, “Robust nonlinear optimal control via system
level synthesis,” IEEE Transactions on Automatic Control,
vol. 70, no. 7, pp. 4780–4787, Jul. 2025. doi:
10.1109/tac.2025.3552482.

[9] C. Mark and S. Liu, “Stochastic MPC with distributionally
robust chance constraints,” en, IFAC-PapersOnLine, vol. 53,
no. 2, pp. 7136–7141, 2020. doi:
10.1016/j.ifacol.2020.12.521.

Convex Optimization for Robust Trajectory Planning and Control 56 December 9, 2025

https://doi.org/10.1109/tac.2025.3552482
https://doi.org/10.1016/j.ifacol.2020.12.521


References V

[10] D. M. Raimondo, D. Limon, M. Lazar, L. Magni, and
E. Fernandez Camacho, “Min-max model predictive control of
nonlinear systems: A unifying overview on stability,” en,
European Journal of Control, vol. 15, no. 1, pp. 5–21, Jan.
2009. doi: 10.3166/ejc.15.5-21.

[11] S. V. Rakovic, W. S. Levine, and B. Açıkmeşe, “Elastic tube
model predictive control,” in
2016 American Control Conference (ACC), IEEE, Jul. 2016,
pp. 3594–3599. doi: 10.1109/acc.2016.7525471.

Convex Optimization for Robust Trajectory Planning and Control 57 December 9, 2025

https://doi.org/10.3166/ejc.15.5-21
https://doi.org/10.1109/acc.2016.7525471


References VI

[12] O. Sheridan and B. Açıkmeşe, “Equivalent linear programming
formulations for robust trajectory planning under input
dependent uncertainties,” in
2022 American Control Conference (ACC), IEEE, 2022,
pp. 1873–1878.

[13] O. Sheridan and B. Açıkmeşe, “Convexification of robust
trajectory planning problems with nominal state and control
dependent uncertainties,” in
2023 62nd IEEE Conference on Decision and Control (CDC),
IEEE, 2023, pp. 6267–6272.

Convex Optimization for Robust Trajectory Planning and Control 58 December 9, 2025



References VII

[14] O. Sheridan and B. Açıkmeşe, “Robust fuel optimal trajectory
planning and feedback control for constrained linear systems
under state-and control-dependent perturbations,”
IEEE Control Systems Letters, 2025.

[15] J. Sieber, A. Didier, and M. N. Zeilinger, “Computationally
efficient system level tube-MPC for uncertain systems,” en,
Automatica, vol. 180, no. 112466, p. 112 466, Oct. 2025. doi:
10.1016/j.automatica.2025.112466.

Convex Optimization for Robust Trajectory Planning and Control 59 December 9, 2025

https://doi.org/10.1016/j.automatica.2025.112466


References VIII

[16] F. Spada, P. Elango, and B. Açıkmes, e, “Impulsive relative
motion control with continuous-time constraint satisfaction for
cislunar space missions,” in
2025 American Control Conference (ACC), IEEE, 2025,
pp. 1719–1724.

[17] E. M. Turan, J. Jäschke, and R. Kannan, “Bounding-focused
discretization methods for the global optimization of nonconvex
semi-infinite programs,” en,
Computational optimization and applications, vol. 92, no. 3,
pp. 1035–1068, Dec. 2025. doi:
10.1007/s10589-025-00710-y.

Convex Optimization for Robust Trajectory Planning and Control 60 December 9, 2025

https://doi.org/10.1007/s10589-025-00710-y


References IX

[18] Y. Xie, J. Berberich, and F. Allgöwer, “Data-driven min–max
MPC for linear systems: Robustness and adaptation,” en,
Automatica, vol. 183, no. 112612, p. 112 612, Jan. 2026. doi:
10.1016/j.automatica.2025.112612.

[19] M. Zagorowska, P. Falugi, E. O’Dwyer, and E. C. Kerrigan,
“Automatic scenario generation for efficient solution of robust
optimal control problems,”
International Journal of Robust and Nonlinear Control, 2024.

Convex Optimization for Robust Trajectory Planning and Control 61 December 9, 2025

https://doi.org/10.1016/j.automatica.2025.112612

	Overview
	Linear Systems without Feedback
	Problem Formulation
	Analytical Results
	Numerical Results

	Linear Systems with Feedback
	Problem Formulation
	Analytical Results
	Numerical Results

	Nonlinear Systems
	Problem Formulation
	Analytical Results
	Numerical Results

	Conclusions
	Appendix
	References

