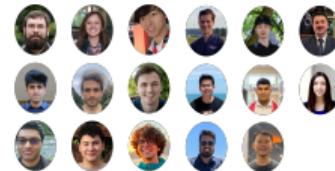


Convex Optimization for Robust Trajectory Planning and Control

Behçet Açıkmeşe

Autonomous Controls Laboratory - University of Washington



Workshop on Stochastic Planning & Control of Dynamical Systems
CDC 2025, Rio de Janeiro, Brazil
December 9, 2025

Contents

1. Overview

2. Linear Systems without Feedback

- Problem Formulation
- Analytical Results
- Numerical Results

3. Linear Systems with Feedback

- Problem Formulation
- Analytical Results
- Numerical Results

4. Nonlinear Systems

- Problem Formulation
- Analytical Results
- Numerical Results

5. Conclusions

6. Appendix

Contents

Overview

Linear Systems without Feedback

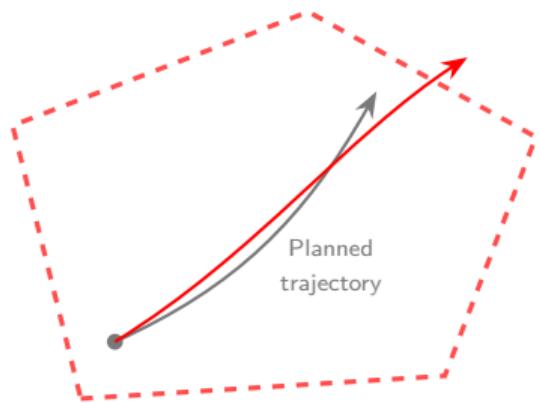
Linear Systems with Feedback

Nonlinear Systems

Conclusions

Overview

- Numerical trajectory planning generates dynamically feasible trajectories ensuring prescribed constraints
- In practice,
 - exogenous perturbations (e.g. winds)
 - endogenous perturbations (e.g. actuator misalignment)cause deviations from the planned trajectory
⇒ constraints may be then violated.



Q0: How to incorporate robust constraint satisfaction?

Robust trajectory optimization leads to **Semi-Infinite Programming (SIP)** problems.

In discrete-time, SIP have:

- **finite** number of decision variables;
- **finite** number of time instances at which constraints are enforced;
- **infinite** number of uncertainty realizations;
 ⇒ **infinite** number of constraints.

Overview

Uncertainty characterization	
Sampling-based [19], [17]	Compact set
Tube-based [11], [5], [3], [15]	Polytopic set
Min-max MPC [10], [18]	Class- \mathcal{K} functions
Stochastic planning [9], [4]	Probabilistic
Funnel synthesis [6],[7]	L^∞ -norm bound
System-Level Synthesis [1], [8]	Ellipsoidal set

Table: Some techniques for robust trajectory planning and control

Contents

Overview

Linear Systems without Feedback

Linear Systems with Feedback

Nonlinear Systems

Conclusions

Problem Formulation

Dynamics

- Discrete-time linear system with endogenous perturbations n_t .
- Dynamics **with perturbations** in recursive form:

$$x_{t+1} = A_t x_t + B_t u_t + E_t n_t \quad t = 0, \dots, N$$

- Variables:

$$\bar{u}_t := \begin{bmatrix} u_0 \\ \vdots \\ u_t \end{bmatrix} \quad \bar{n}_t := \begin{bmatrix} n_0 \\ \vdots \\ n_t \end{bmatrix}$$

- Dynamics in **stacked form**:

$$x_{t+1} = \Phi_{t+1,0} x_0 + \bar{B}_t \bar{u}_t + \bar{E}_t \bar{n}_t$$

Problem Formulation

Nominal and deviation dynamics

- We decompose **state** into **nominal** x^n and **deviation states** Δx :

$$x_{t+1} = x_{t+1}^n + \Delta x_{t+1}$$

- Nominal state and deviation **dynamics** in **recursive form**:

$$x_{t+1}^n = A_t x_t^n + B_t u_t,$$

$$\Delta x_{t+1} = A_t \Delta x_t + E_t n_t.$$

- Nominal state and deviation **dynamics** in **stacked form**:

$$x_{t+1}^n = \Phi_{t+1,0} x_0^n + \bar{B}_t \bar{u}_t$$

$$\Delta x_{t+1} = \Phi_{t+1,0} \Delta x_0 + \bar{E}_t \bar{n}_t$$

Problem Formulation

Perturbation, Cost and Constraints

- **Nominal state and control**-dependent perturbation:

$$0 \leq n_t \leq f(x_t^n, u_t)$$

where $f(x_t^n, u_t)$ is **convex and elementwise nonnegative**.

- **Convex** cost function

$$J(\bar{u}_T)$$

- **SIP time-varying** state constraints

$$H_{t+1}x_{t+1} \leq h_{t+1} \quad \forall \bar{n}_t, \quad t = 0, \dots, N$$

Problem Formulation

Trajectory planning problem

Semi-Infinite Robust Trajectory Planning problem:

$$\underset{\bar{x}_{T+1}^n, \bar{u}_T}{\text{minimize}} \quad J(\bar{u}_T)$$

s.t. Dynamics with perturbations:

$$x_{t+1} = \Phi_{t+1,0}x_0^n + \bar{B}_t \bar{u}_t + \Phi_{t+1,0} \Delta x_0 + \bar{E}_t \bar{n}_t \quad t = 0, \dots, N$$

SIP state constraints:

$$H_{t+1}x_{t+1} \leq h_{t+1} \quad \forall \bar{n}_t \text{ s.t. } 0 \leq \bar{n}_t \leq \bar{f}(\bar{x}_t^n, \bar{u}_t) \quad t = 0, \dots, N$$

Analytical Results

SIP State Constraint - Reformulation

- **SIP state constraints** satisfied **robustly** if

$$\max_{0 \leq \bar{n}_t \leq \bar{f}(\bar{x}_t^n, \bar{u}_t)} H_{t+1,i} \bar{E}_t \bar{n}_t \leq M_{RHS,i}, \quad i = 1, \dots, n_h$$

where

$$H_{t+1} = \begin{bmatrix} H_{t+1,1} \\ \vdots \\ H_{t+1,n_h} \end{bmatrix}$$

$$M_{RHS,i} := h_{t+1,i} - H_{t+1,i}(\Phi_{t+1,0}x_0^n + \bar{B}_t \bar{u}_t + \Phi_{t+1,0} \Delta x_0)$$

Analytical Results

SIP State Constraint - Reformulation

- **Dual** of the **maximization problem**:

$$\begin{aligned} \min_{\lambda_{t,i}} \quad & \lambda_{t,i}^T \bar{f}(\bar{x}_t^n, \bar{u}_t) \\ \text{s.t.} \quad & \lambda_{t,i} \geq 0, \quad \lambda_{t,i}^T \geq H_{t+1,i} \bar{E}_t \end{aligned}$$

- **Feasible dual cost** bounds **the primal**.
⇒ **SIP state constraints** satisfied if

$$\begin{aligned} \lambda_{t,i}^T \bar{f}(\bar{x}_t^n, \bar{u}_t) &\leq M_{RHS,i} \\ \lambda_{t,i} &\geq 0, \quad \lambda_{t,i}^T \geq H_{t+1,i} \bar{E}_t \end{aligned}$$

for all $i \in 1, \dots, n_h$.

Analytical Results

SIP State Constraint - Reformulation

- **Dual variables** in stacked form:

$$\Lambda_t = \begin{bmatrix} \lambda_{t,1}^T \\ \vdots \\ \lambda_{t,n_h}^T \end{bmatrix}$$

- **State constraints** in stacked form:

$$\Lambda_t \geq H_{t+1} \bar{E}_t, \quad \Lambda_t \geq 0,$$

$$\Lambda_t \bar{f}(\bar{x}_t^n, \bar{u}_t) \leq M_{RHS}.$$

- **Biconvex** in Λ_t , \bar{x}_t^n , \bar{u}_t .
- Minimum components of $\Lambda_t \Rightarrow$ minimum **dual cost** \Rightarrow no **conservatism**

Analytical Results

Closed-form solution

- **Strong duality** holds for the **constraint reformulation**
⇒ State Constraints satisfied
 - **robustly**
 - **with no conservatism**

for the following choice of dual variable Λ :

$$\Lambda_t^* = \max\{0, H_{t+1} \bar{E}_t\}$$

Analytical Results

Convex trajectory planning problem

Convex Reduction \Rightarrow **Convexified** Robust Trajectory Planning problem

$$\underset{\bar{x}_{T+1}^n, \bar{u}_T}{\text{minimize}} \quad J(\bar{u}_T)$$

s.t. Dynamics:

$$\bar{x}_{t+1}^n = \Phi_{t+1,0} \bar{x}_0^n + \bar{B}_t \bar{u}_t \quad t = 0, \dots, N$$

State constraints:

$$\Lambda_t^* \bar{f}(\bar{x}_t^n, \bar{u}_t) \leq M_{RHS} \quad t = 0, \dots, N$$

Example Simulation

Spacecraft Proximity Operations

- Clohessy-Wiltshire equations for dynamics;
- S/C must navigate from (relative) stationary position into a terminal bounding box, s.t. keep-out plane constraint [12], [13]

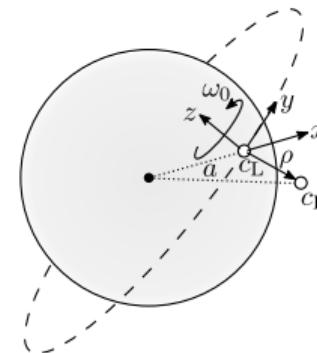


Figure: Schematics of the problem^[1]

[1] Malyuta, D., Açıkmese, B. and Cacan, M. "Robust Model Predictive Control for Linear Systems with State and Input Dependent Uncertainties", ACC 2019

Example Simulation

Spacecraft Proximity Operations

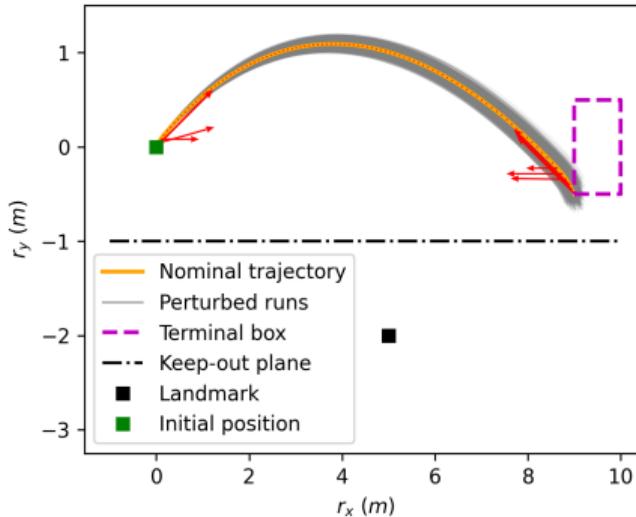


Figure: No planning for perturbation; many trajectories unsafe.

Perturbations:

- **Control uncertainty:** error proportional to **control magnitude** (Gates' model)
- **Navigation uncertainty:** error proportional to **distance from landmark**:

$$0 \leq n \leq 2(r - r_{lm})^2$$

Example Simulation

Spacecraft Proximity Operations

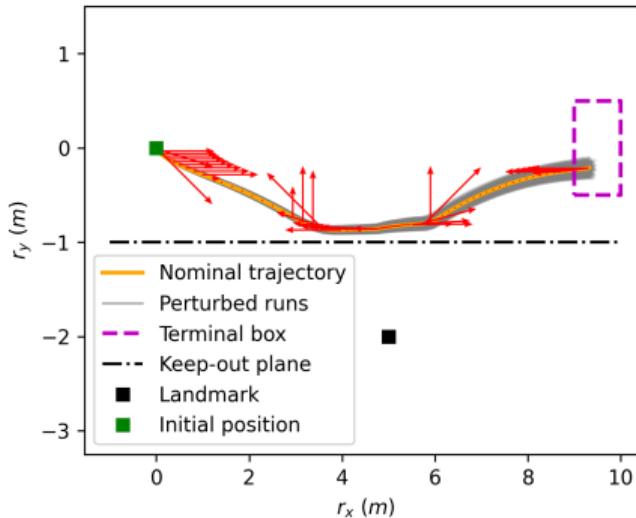


Figure: Planning for perturbation; all trajectories safe.

Perturbations:

- **Control uncertainty:** error proportional to **control magnitude** (Gates' model)
- **Navigation uncertainty:** error proportional to **distance from landmark**

$$0 \leq n \leq 2(r - r_{lm})^2$$

Contents

Overview

Linear Systems without Feedback

Linear Systems with Feedback

Nonlinear Systems

Conclusions

Problem Formulation

Linear System with Feedback

- Dynamics with perturbations as before:

$$x_{t+1} = A_t x_t + B_t u_t + E_t n_t \quad t = 0, \dots, N$$

but

- **Control** u_t is decomposed into **open-loop** v_t and a **linear state feedback** $K_t \Delta x_t$:

$$u_t = v_t + K_t \Delta x_t$$

- Nominal and deviation dynamics **with feedback** in recursive form:

$$x_{t+1}^n = A_t x_t^n + B_t v_t,$$

$$\Delta x_{t+1} = (A_t + B_t K_t) \Delta x_t + E_t n_t.$$

Problem Formulation

Linear System with Feedback

- Control in stacked form:

$$\bar{u}_t = \bar{v}_t + \bar{K}_t \Delta \bar{x}_t$$

given

$$\bar{K}_t := \text{diag}(K_0, \dots, K_t), \quad \Delta \bar{x}_t := \begin{bmatrix} \Delta x_0 \\ \vdots \\ \Delta x_t \end{bmatrix}, \quad \bar{v}_t := \begin{bmatrix} v_0 \\ \vdots \\ v_t \end{bmatrix}$$

Problem Formulation

Linear System with Feedback

- Matrices:

$$\bar{\Phi}_{t,0} := \begin{bmatrix} I \\ \vdots \\ \Phi_{t,0} \end{bmatrix} \quad \bar{\bar{E}}_t := \begin{bmatrix} \bar{E}_0 & 0 \\ \vdots & \vdots \\ \bar{E}_t & 0 \end{bmatrix}$$

- Nominal and deviation dynamics **with feedback** in stacked form:

$$x_{t+1}^n = \Phi_{t+1,0} x_0^n + \bar{B}_t \bar{v}_t,$$

$$\Delta x_{t+1} = (\Phi_{t+1,0} + \bar{B}_t \bar{K}_t \bar{\Phi}_{t,0}) \Delta x_0 + (\bar{E}_t + \bar{B}_t \bar{K}_t \bar{\bar{E}}_{t-1}) \bar{n}_t.$$

Problem Formulation

Perturbation, Cost and Constraints

- As before:

- **Nominal state and control**-dependent perturbation;

$$0 \leq n_t \leq f(x_t^n, v_t)$$

- **SIP state constraints**:

$$H_{t+1}x_{t+1} \leq h_{t+1} \quad \forall \bar{n}_t$$

- **Convex** cost function, treated with SIP constraint:

$$J(\bar{u}_T) \leq \mathcal{J} \quad \forall \bar{n}_T$$

Problem Formulation

Trajectory planning problem

Semi-Infinite Robust Trajectory Planning problem:

$$\underset{\bar{x}_{T+1}^n, \bar{v}_T, \bar{K}_T, \mathcal{J}}{\text{minimize}} \quad \mathcal{J}$$

s.t.

Nominal dynamics:

$$x_{t+1}^n = \Phi_{t+1,0} x_0^n + \bar{B}_t \bar{v}_t \quad t = 0, \dots, N$$

Deviation dynamics:

$$\Delta x_{t+1} = (\Phi_{t+1,0} + \bar{B}_t \bar{K}_t \bar{\Phi}_{t,0}) \Delta x_0 + (\bar{E}_t + \bar{B}_t \bar{K}_t \bar{\bar{E}}_{t-1}) \bar{n}_t \quad t = 0, \dots, N$$

SIP state constraints:

$$H_{t+1} x_{t+1} \leq h_{t+1} \quad \forall \bar{n}_t \text{ s.t. } 0 \leq \bar{n}_t \leq \bar{f}(\bar{x}_t^n, \bar{v}_t) \quad t = 0, \dots, N$$

SIP cost constraint:

$$J(\bar{u}_T) \leq \mathcal{J} \quad \forall \bar{n}_T \text{ s.t. } 0 \leq \bar{n}_T \leq \bar{f}(\bar{x}_T^n, \bar{v}_T)$$

Analytical Results

SIP State Constraint - Reformulation

- **SIP state constraints** satisfied if

$$\begin{aligned} \max_{\bar{n}_t} \quad & H_{t+1,i} (\bar{E}_t + \bar{B}_t \bar{K}_t \bar{\bar{E}}_{t-1}) \bar{n}_t \leq M_{RHS,i} \quad i = 1, \dots, n_h \\ \text{s.t.} \quad & 0 \leq \bar{n}_t \leq \bar{f}(\bar{x}_t^n, \bar{v}_t) \end{aligned}$$

where

$$M_{RHS,i} := h_{t+1,i} - H_{t+1,i} (\Phi_{t+1,0} x_0^n + \bar{B}_t \bar{v}_t + (\Phi_{t+1,0} + \bar{B}_t \bar{K}_t \bar{\Phi}_{t,0}) \Delta x_0)$$

Analytical Results

SIP State Constraint - Reformulation

- **Dualization**

⇒ Equivalent **state constraints** in stacked form:

$$\Lambda_t \geq H_{t+1} (\bar{E}_t + \bar{B}_t \bar{K}_t \bar{\bar{E}}_{t-1}), \quad (1)$$

$$\Lambda_t \geq 0, \quad (2)$$

$$\Lambda_t \bar{f}(\bar{x}_t^n, \bar{v}_t) \leq M_{RHS}. \quad (3)$$

- **Biconvex** in Λ_t , \bar{x}_t^n , \bar{v}_t , minimum components of Λ_t
⇒ no **conservatism**.
- What about the gain \bar{K}_t ?

Analytical Results

Feedback Gain Synthesis Step

- System is **stable** iff exist G and **symmetric** P such that [2]

$$\begin{bmatrix} P & (A_t + B_t K_t)^T G_t^T \\ G_t (A_t + B_t K_t) & G_t + G_t^T - P \end{bmatrix} \succ 0 \quad (4)$$

Algorithm Feedback Gain Synthesis

Input: $K^{(0)}, \varepsilon_G$

- 1: $k \leftarrow 0$
- 2: **while** $\|P^{(k)} - G^{(k)}\| > \varepsilon_G$ **do**
- 3: Fix $K = K^{(k)}$, minimize $\|P - G\|_2$ subject to (4)
- 4: Fix $G = G^{(k)}$, minimize $\mathbf{1}^\top \Lambda \mathbf{1}$ subject to (1), (2), (4)
- 5: $k \leftarrow k + 1$
- 6: **end while**
- 7: **Return** $K^{(k)}$

Analytical Results

SIP Cost Constraint - Reformulation

- **Cost** $\partial_{\bar{n}_T} J \bar{n}_T$ **bounded** by \mathcal{J}_n if :

$$\begin{aligned} \max_{\bar{n}_T} \quad & \partial_{\bar{n}_T} J \bar{n}_T \leq \mathcal{J}_n \\ \text{s.t.} \quad & 0 \leq \bar{n}_T \leq \bar{f}(\bar{x}_T^n, \bar{v}_T) \end{aligned}$$

- **Dualizing** and **expressing constraints** in stacked form:

$$\begin{aligned} \Lambda_T^J &\geq \partial_{\bar{n}_T} J, \\ \Lambda_T^J &\geq 0, \\ \Lambda_T^J \bar{f}(\bar{x}_T^n, \bar{v}_T) &\leq \mathcal{J}_n \end{aligned}$$

- Minimum components of $\Lambda_T^J \Rightarrow$ no **conservatism**.

Analytical Results

Closed-form solution

- SIP State Constraints satisfied for the choice of Λ_t

$$\Lambda_t^* = \max\{0, H_{t+1} (\bar{E}_t + \bar{B}_t \bar{K}_t \bar{\bar{E}}_{t-1})\}$$

- **Uncertain cost** bounded
 - **with no conservatism**

for the choice of Λ_T^J :

$$\Lambda_T^{J*} = \max\{0, \partial_{\bar{n}_T} J\}$$

Analytical Results

Trajectory Planning Step

Convexified Robust Trajectory Planning problem

$$\underset{\bar{x}_{T+1}^n, \bar{v}_T, \mathcal{J}, \mathcal{J}_n}{\text{minimize}} \quad \mathcal{J}$$

s.t. Dynamics:

$$x_{t+1}^n = \Phi_{t+1,0} x_0^n + \bar{B}_t \bar{v}_t \quad t = 0, \dots, N$$

State constraints:

$$\Lambda_t^* \bar{f}(\bar{x}_t^n, \bar{v}_t) \leq M_{RHS} \quad t = 0, \dots, N$$

Cost function:

$$\Lambda_T^* \bar{f}(\bar{x}_T^n, \bar{v}_T) \leq \mathcal{J}_n$$

$$J(\bar{v}_T + \partial_{\Delta x_0} \bar{u}_T \Delta x_0) + \mathcal{J}_n \leq \mathcal{J}$$

Analytical Results

Complete algorithm

Algorithm Convex Robust Trajectory Planning and control

- 1: **Compute** Stabilizing control guess $K^{(0)}$
- 2: **Solve** Feedback Gain Synthesis
- 3: **Compute** $\Lambda_t^*, \Lambda_T^{J*}$
- 4: **Solve** Convexified robust trajectory planning
- 5: **Return** $\bar{x}_{T+1}^n, \bar{v}_T, \bar{K}_T, \mathcal{J}$

- **Control synthesis** and **trajectory optimization** performed **sequentially**

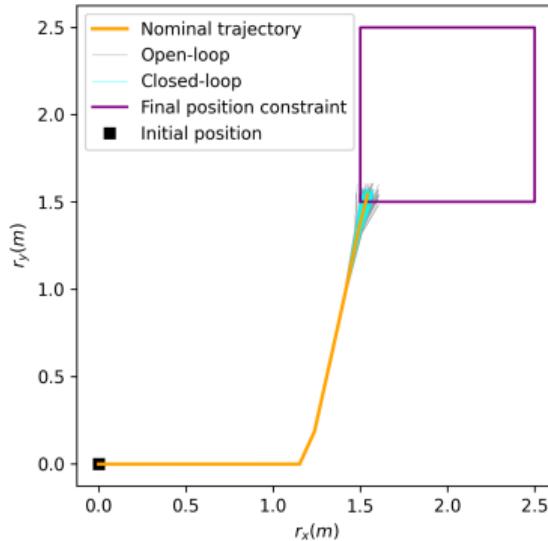
Example Simulation

Double Integrator with K synthesis

- 2-DoF double integrator; difference between **open-loop** vs. **closed-loop** Monte Carlo simulations.
- Vehicle must **navigate** from stationary position into a **terminal bounding box**, subject to
 - perturbation **increasing with distance** from x-axis
 - optimized **linear feedback K**

Example Simulation

Double Integrator with K synthesis



Perturbations [14]:

- **Navigation uncertainty:** error proportional to **distance from y-plane:**

$$0 \leq n \leq 2r_y^2$$

Figure: Dispersed trajectories with feedback

Example Simulation

Double Integrator with K synthesis

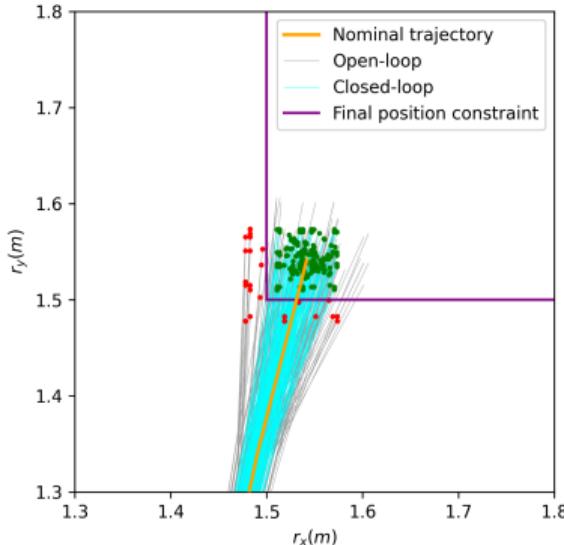


Figure: Control ensures constraint satisfaction

Perturbations:

- **Navigation uncertainty:** error proportional to **distance from y-plane:**

$$0 \leq n \leq 2r_y^2$$

Contents

Overview

Linear Systems without Feedback

Linear Systems with Feedback

Nonlinear Systems

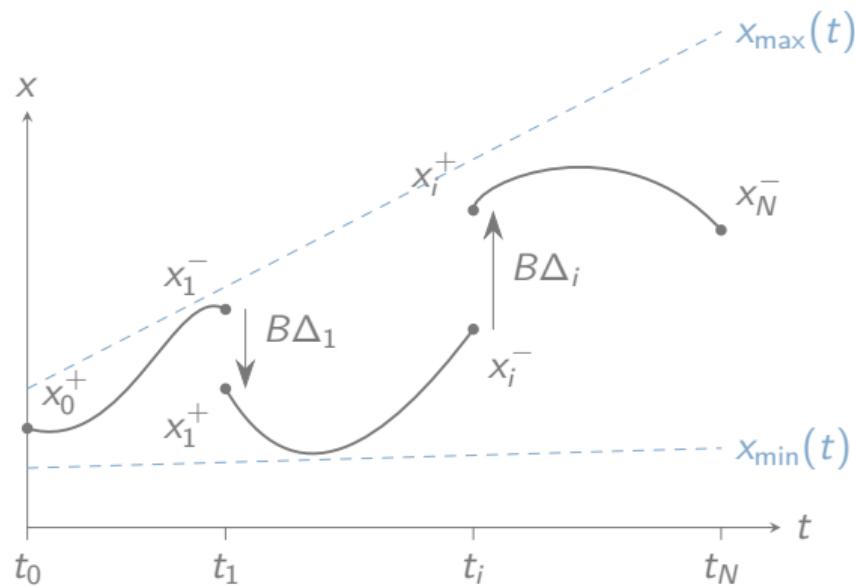
Conclusions

Problem Formulation

Overview

Apply an impulse at each time instant t_i .

Satisfy state constraints for all times $t \in [t_0, t_N]$.

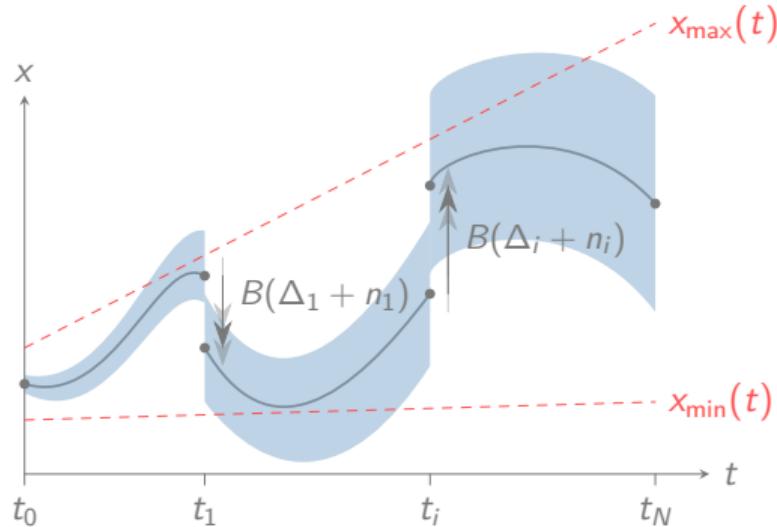


Problem Formulation

Overview

Uncertainty **grows**:

- **during** each interval
- **at** each impulse



Problem Formulation

Dynamics

- **Continuous-time (CT) nonlinear** dynamical system with endogenous **uncertain impulsive controls** [16].
- **CT** dynamics with **uncertain** initial conditions:

$$\dot{x}(t) = f(x(t)), \quad x(t_0^+) = \bar{x}_0^- + B_0 n_{x,0}$$

where \bar{x}_0^- is assigned.

- **Uncertain impulsive** controls:

$$x(t_i^+) = x(t_i^-) + B(\Delta_i + n_i) \quad i = 0, \dots, N$$

Problem Formulation

Nominal and deviation dynamics

- We decompose **state** into **nominal** \hat{x} and **deviation states** δx :

$$x(t) = \hat{x}(t) + \delta x(t)$$

- Nominal state and deviation **dynamics**:

$$\dot{\hat{x}}(t) = f(\hat{x}(t))$$

$$\dot{\delta x}(t) = f(x(t)) - f(\hat{x}(t))$$

$$\hat{x}(t_i^+) = \hat{x}(t_i^-) + B\Delta_i$$

$$\delta x(t_i^+) = \delta x(t_i^-) + Bn_i, \quad \delta x(t_0^-) = B_0 n_{x,0}$$

Problem Formulation

Perturbation, Constraints, Cost

- **Nominal state and control**-dependent perturbations:

$$0 \leq n_i \leq \beta_{\Delta,i}(\hat{x}(t_i^-), \Delta_i)$$
$$0 \leq n_{x,0} \leq \beta_x(\hat{x}(t_0^-))$$

where β_{Δ}, β_x are **elementwise nonnegative** functions.

- **SIP continuous-time linear** state constraints

$$H x(t) \leq h \quad \forall \mathbf{n} := \begin{bmatrix} n_0^\top & n_1^\top & \dots & n_N^\top \end{bmatrix}^\top$$

- **Nominal** cost

$$L(\hat{x}_N)$$

Problem Formulation

Nonlinear Robust trajectory planning problem

Semi-Infinite Nonlinear Robust Trajectory Planning problem:

$$\underset{\hat{x}, \Delta}{\text{minimize}} \quad L(\hat{x}_N)$$

s.t. Dynamics:

$$\dot{x}(t) = f(x(t))$$

Uncertain impulsive controls:

$$x(t_i^+) = x(t_i^-) + B(\Delta_i + n_i) \quad i = 0, \dots, N$$

Uncertain initial conditions:

$$x(t_0^-) = \bar{x}_0^- + B_0 n_{x,0}$$

SIP state constraints:

$$Hx(t) \leq h \quad \forall \mathbf{n} \text{ s.t. } 0 \leq n_i \leq \beta_{\Delta,i}(\hat{x}(t_i^-), \Delta_i) \\ 0 \leq n_{x,0} \leq \beta_x(\hat{x}(t_0^-))$$

Analytical Results

Uncertain State Constraint - Reformulation

- **SIP approximate state constraints** satisfied **robustly** at each time t if

$$\begin{aligned} \max_{\mathbf{n}} \quad & H_i \mathbf{E}(t) \mathbf{n} \leq M_{RHS,i} \\ \text{s.t.} \quad & 0 \leq \mathbf{n} \leq \beta(\hat{\mathbf{x}}^-, \Delta) \end{aligned}$$

where

$$\beta := \begin{bmatrix} \beta_x \\ \beta_{\Delta,0} \\ \vdots \\ \beta_{\Delta,N} \end{bmatrix}, \quad H = \begin{bmatrix} H_1 \\ \vdots \\ H_{n_h} \end{bmatrix}, \quad M_{RHS} = h - H\hat{x}(t),$$

$$\mathbf{E}(t) := \left[\frac{\partial x(t)}{\partial n_{x,0}} \frac{\partial x(t)}{\partial n_1} \dots \frac{\partial x(t)}{\partial n_N} \right]$$

Analytical Results

Uncertain State Constraint - Reformulation

- Using **duality**, SIP constraint is satisfied **for all times t** if

$$\begin{aligned}\Lambda(t) &\geq H\mathbf{E}(t), \quad \Lambda(t) \geq 0, \\ \Lambda(t)\beta(\hat{\mathbf{x}}^-, \Delta) &\leq M_{RHS}\end{aligned}$$

- **Constraint duals** are minimized

$$\Lambda^*(t) = \max\{0, H\mathbf{E}(t)\}$$

Analytical Results - Nonlinear Case

Uncertain State Constraint - CT reformulation

- **Augment** state^[1] with $\xi(t)$, with dynamics

$$f_\xi(\hat{x}, \Delta) := \max\{0, \Lambda^*(t)\beta(\hat{x}^-, \Delta) - M_{RHS}\}^2$$

- Constraints satisfied iff **isoperimetric boundary conditions** satisfied:

$$\begin{aligned}\dot{\xi}(t) &= f_\xi(\hat{x}, \Delta) \\ \xi_i^+ - \xi_{i+1}^- &= 0 \quad i = 0, \dots, N-1\end{aligned}$$

[1] Elango, P., Luo, D., Kamath, A. G., Uzun, S. Kim, T. and Açıkmese, B. "Continuous-Time Successive Convexification for Constrained Trajectory Optimization." Automatica, 2025.

Analytical Results

Nonlinear CT-Robust trajectory planning problem

Nonlinear **CT-Robust** Trajectory Planning problem:

$$\underset{\hat{x}, \Delta}{\text{minimize}} \quad L(\hat{x}_N)$$

s.t. Dynamics:

$$\dot{\hat{x}}(t) = f(\hat{x}(t))$$

Impulsive controls:

$$\hat{x}_i^+ = \hat{x}_i^- + B\Delta_i \quad i = 0, \dots, N$$

Initial conditions:

$$\hat{x}(t_0^-) = \bar{x}_0^-$$

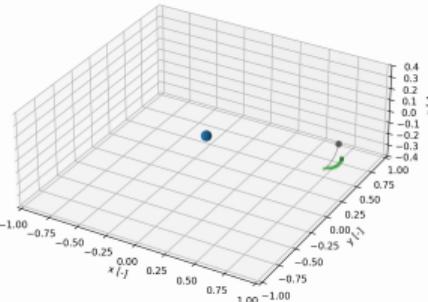
State constraints:

$$\dot{\xi}(t) = f_\xi(\hat{x}, \Delta)$$

$$\xi_i^+ - \xi_{i+1}^- = 0 \quad i = 0, \dots, N-1$$

Example Simulation

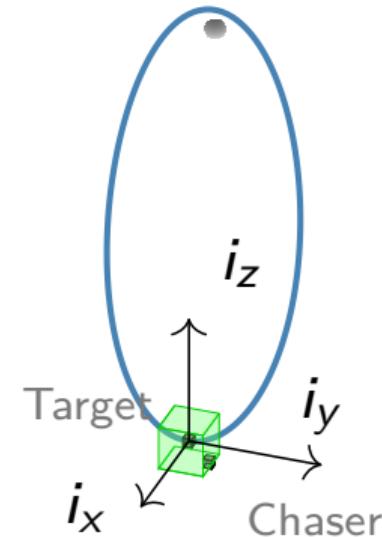
Nonlinear Near-Rectilinear Halo Orbit Dynamics



Example Simulation

Nonlinear Near-Rectilinear Halo Orbit Dynamics

- 3-DoF relative dynamics on Near-Rectilinear Halo Orbit
- Chaser must loiter **for as long as possible** in a box **around target**.
- **Uncertain impulse** proportional to
 - **control magnitude** (Gates' model)
 - **position on orbit** (high at **perilune**, low at **apolune**)



Example Simulation

Nonlinear Near-Rectilinear Halo Orbit Dynamics

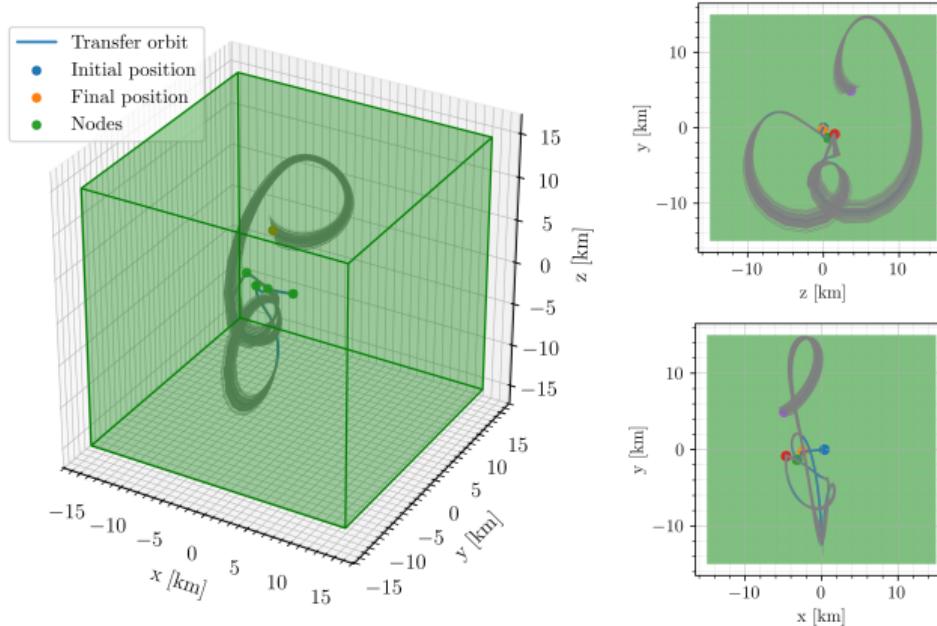
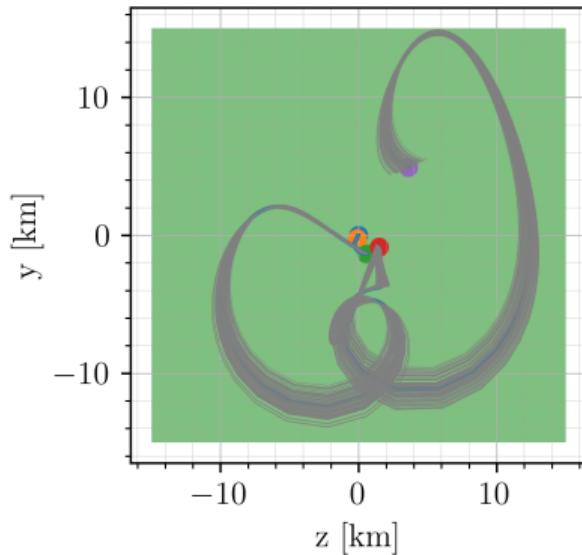


Figure: Dispersed trajectories around the target - Dots are impulse locations

Example Simulation

Nonlinear Near-Rectilinear Halo Orbit Dynamics



- Initial offset along **Earth-Moon** axis
- Impulses applied where **position uncertain** is **low**
- All trajectories **inside** the box **at all times**

Contents

Overview

Linear Systems without Feedback

Linear Systems with Feedback

Nonlinear Systems

Conclusions

Conclusions

Q0: How to incorporate **robust constraint satisfaction**?

- **Duality** can bypass **Semi-Infinite** formulations of robust trajectory optimization problems.

Q1: How to incorporate **robust constraint satisfaction** without **conservatism**?

- **Duality** enables **robust constraint satisfaction** for both linear and nonlinear dynamical systems;
- **Endogenous** perturbations can be treated with **no conservatism** under mild modeling assumptions;

References I

- [1] S. Chen, V. M. Preciado, M. Morari, and N. Matni, "Robust model predictive control with polytopic model uncertainty through System Level Synthesis," en, Automatica, vol. 162, no. 111431, p. 111431, Apr. 2024. DOI: [10.1016/j.automatica.2023.111431](https://doi.org/10.1016/j.automatica.2023.111431).
- [2] M. C. De Oliveira, J. Bernussou, and J. C. Geromel, "A new discrete-time robust stability condition," Systems & control letters, vol. 37, no. 4, pp. 261–265, 1999.
- [3] S. Diaconescu, F. Stoican, B. D. Ciubotaru, and S. Olaru, "Zonotope-based elastic tube Model Predictive Control," arXiv [eess.SY], 2025.

References II

- [4] K. Echigo et al., “Principled stochastic trajectory planning for asteroid reconnaissance,” en, Journal of Guidance, Control, and Dynamics, pp. 1–19, 18 11 2025. DOI: [10.2514/1.g008899](https://doi.org/10.2514/1.g008899).
- [5] B. Houska, J. Li, and B. Chachuat, “Towards rigorous robust optimal control via generalized high-order moment expansion,” en, Optimal control applications & methods, vol. 39, no. 2, pp. 489–502, Mar. 2018. DOI: [10.1002/oca.2309](https://doi.org/10.1002/oca.2309).

References III

- [6] T. Kim, P. Elango, and B. Açıkmeşe, “Joint synthesis of trajectory and controlled invariant funnel for discrete-time systems with locally Lipschitz nonlinearities,” *en, International journal of robust and nonlinear control*, vol. 34, no. 6, pp. 4157–4176, Apr. 2024. DOI: [10.1002/rnc.7186](https://doi.org/10.1002/rnc.7186).
- [7] T. Kim, D. Luo, and B. Açıkmeşe, “Continuous-time constrained funnel synthesis for incrementally quadratic nonlinear systems,” *arXiv [math.OC]*, Dec. 2025. DOI: [10.48550/arXiv.2511.08868](https://doi.org/10.48550/arXiv.2511.08868).

References IV

- [8] A. P. Leeman, J. Köhler, A. Zanelli, S. Bennani, and M. N. Zeilinger, "Robust nonlinear optimal control via system level synthesis," IEEE Transactions on Automatic Control, vol. 70, no. 7, pp. 4780–4787, Jul. 2025. DOI: [10.1109/tac.2025.3552482](https://doi.org/10.1109/tac.2025.3552482).
- [9] C. Mark and S. Liu, "Stochastic MPC with distributionally robust chance constraints," en, IFAC-PapersOnLine, vol. 53, no. 2, pp. 7136–7141, 2020. DOI: [10.1016/j.ifacol.2020.12.521](https://doi.org/10.1016/j.ifacol.2020.12.521).

References V

- [10] D. M. Raimondo, D. Limon, M. Lazar, L. Magni, and E. Fernandez Camacho, “Min-max model predictive control of nonlinear systems: A unifying overview on stability,” *en, European Journal of Control*, vol. 15, no. 1, pp. 5–21, Jan. 2009. DOI: [10.3166/ejc.15.5-21](https://doi.org/10.3166/ejc.15.5-21).
- [11] S. V. Rakovic, W. S. Levine, and B. Açıkmeşe, “Elastic tube model predictive control,” in *2016 American Control Conference (ACC)*, IEEE, Jul. 2016, pp. 3594–3599. DOI: [10.1109/acc.2016.7525471](https://doi.org/10.1109/acc.2016.7525471).

References VI

- [12] O. Sheridan and B. Açıkmeşe, “Equivalent linear programming formulations for robust trajectory planning under input dependent uncertainties,” in 2022 American Control Conference (ACC), IEEE, 2022, pp. 1873–1878.
- [13] O. Sheridan and B. Açıkmeşe, “Convexification of robust trajectory planning problems with nominal state and control dependent uncertainties,” in 2023 62nd IEEE Conference on Decision and Control (CDC), IEEE, 2023, pp. 6267–6272.

References VII

- [14] O. Sheridan and B. Açıkmeşe, “Robust fuel optimal trajectory planning and feedback control for constrained linear systems under state-and control-dependent perturbations,” IEEE Control Systems Letters, 2025.
- [15] J. Sieber, A. Didier, and M. N. Zeilinger, “Computationally efficient system level tube-MPC for uncertain systems,” en, Automatica, vol. 180, no. 112466, p. 112466, Oct. 2025. DOI: [10.1016/j.automatica.2025.112466](https://doi.org/10.1016/j.automatica.2025.112466).

References VIII

- [16] F. Spada, P. Elango, and B. Açıkmeşe, “Impulsive relative motion control with continuous-time constraint satisfaction for cislunar space missions,” in 2025 American Control Conference (ACC), IEEE, 2025, pp. 1719–1724.
- [17] E. M. Turan, J. Jäschke, and R. Kannan, “Bounding-focused discretization methods for the global optimization of nonconvex semi-infinite programs,” en, Computational optimization and applications, vol. 92, no. 3, pp. 1035–1068, Dec. 2025. DOI: [10.1007/s10589-025-00710-y](https://doi.org/10.1007/s10589-025-00710-y).

References IX

- [18] Y. Xie, J. Berberich, and F. Allgöwer, “Data-driven min–max MPC for linear systems: Robustness and adaptation,” *en, Automatica*, vol. 183, no. 112612, p. 112612, Jan. 2026. DOI: [10.1016/j.automatica.2025.112612](https://doi.org/10.1016/j.automatica.2025.112612).
- [19] M. Zagorowska, P. Falugi, E. O’Dwyer, and E. C. Kerrigan, “Automatic scenario generation for efficient solution of robust optimal control problems,” *International Journal of Robust and Nonlinear Control*, 2024.